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Figure 1. AnyCam. Given a casual video and pretrained monocular depth estimation (MDE) and optical flow networks, AnyCam outputs
camera poses, camera intrinsics, and uncertainty maps in a single forward pass. The uncertainty maps represent probable movement in the
scene. By using a novel loss formulation, AnyCam can be trained on a large corpus of unlabelled videos mostly obtained from YouTube.

Abstract

Estimating camera motion and intrinsics from casual
videos is a core challenge in computer vision. Traditional
bundle-adjustment based methods, such as SfM and SLAM,
struggle to perform reliably on arbitrary data. Although
specialized SfM approaches have been developed for han-
dling dynamic scenes, they either require intrinsics or com-
putationally expensive test-time optimization and often fall
short in performance. Recently, methods like Dust3r have
reformulated the SfM problem in a more data-driven way.
While such techniques show promising results, they are still
1) not robust towards dynamic objects and 2) require la-
beled data for supervised training. As an alternative, we
propose AnyCam, a fast transformer model that directly es-
timates camera poses and intrinsics from a dynamic video
sequence in feed-forward fashion. Our intuition is that such
a network can learn strong priors over realistic camera
poses. To scale up our training, we rely on an uncertainty-
based loss formulation and pre-trained depth and flow net-
works instead of motion or trajectory supervision. This al-
lows us to use diverse, unlabelled video datasets obtained
mostly from YouTube. Additionally, we ensure that the
predicted trajectory does not accumulate drift over time
through a lightweight trajectory refinement step. We test
AnyCam on established datasets, where it delivers accurate
camera poses and intrinsics both qualitatively and quanti-
tatively. Furthermore, even with trajectory refinement, Any-
Cam is significantly faster than existing works for SfM in

dynamic settings. Finally, by combining camera informa-
tion, uncertainty, and depth, our model can produce high-
quality 4D pointclouds. For more details and code, please
check out our project page: fwmb.github.io/anycam

1. Introduction

Estimating camera motion and intrinsics from a casual, dy-
namic video is a long-standing problem in 3D computer vi-
sion. Such scene parameters serve as the basis for a plethora
of more complex applications, ranging from novel view
synthesis to reconstruction. In particular, an efficient and
robust solution to this problem would unlock the huge cor-
pus of online video data from sources like YouTube to train
3D foundation models. To this day, the availability of 3D
data is one of the main limitations when creating general-
purpose 3D models. [33]

Traditional SfM (and SLAM) systems like COLMAP
[32] excel at reconstruction in settings where a static scene
is captured from many well-distributed camera angles.
However, they generally fail when there are dynamic parts
in the scene, the camera follows a suboptimal trajectory, or
the image quality suffers from artifacts. This makes them
unsuitable for casual videos. Recently, a number of works
have proposed to incorporate certain deep learning-based
components into or instead of the classic SfM pipeline to
make it more robust. For example, Dust3r [44] proposes
a network to predict dense 3D pointmaps from multiple
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views. Camera pose and intrinsics can then be recovered
by aligning the point maps from every view. FlowMap [34]
reformulates the problem by learning per-frame depth and
aligning them based on flow and point tracks. While these
proposed approaches show promising results, they are still
restricted to static scenes and fail when dynamic objects are
too prominent. There are methods specifically designed to
deal with dynamic scenes, e.g. LeapVO [5] and ParticleSfM
[56]. However, they are generally trained in a supervised
way and require calibrated camera intrinsics. Given the gen-
eral lack of intrinsics information in casual videos, the ap-
plicability of such methods in this domain is limited.

This work presents AnyCam, a novel method targeted
explicitly for robust camera motion and intrinsics estima-
tion in dynamic casual videos. Unlike most existing ap-
proaches, we utilize a transformer-based model to directly
predict relative camera poses and intrinsics for a sequence
of video frames. Crucially, this end-to-end formulation al-
lows our network to learn strong priors over plausible cam-
era poses and to become robust towards imperfect inputs.
Additionally, we design a training scheme that can ingest
raw videos and does not require any labels. Our formulation
effectively models data uncertainty and automatically filters
out dynamic objects. This enables training on a collection
of datasets obtained from YouTube and other casual video
sources, resulting in strong generalization capabilities. Fur-
thermore, we present a lightweight test-time refinement step
to avoid long-term drift.

Our experiments thoroughly test AnyCam’s zero-shot
capabilities in camera pose estimation and intrinsics recov-
ery. We achieve state-of-the-art results on several challeng-
ing dynamic benchmarks and perform on par with meth-
ods trained fully supervised with labeled data. Additionally,
by combining camera information, uncertainties, and depth
maps, we can create high-fidelity 4D pointclouds.

2. Related Work

2.1. Foundational Models for Depth and Flow

In the tasks of monocular depth (MDE) and flow estimation,
well-generalizable foundation models have replaced early
deep learning approaches [8, 12, 13] in the last years. For
MDE, DepthAnything [50] uses a data engine to construct
a large corpus of automatically annotated data to learn rel-
ative depth estimation. Additional fine-tuning allows for
metric depth estimates. DepthAnythingV2 [51] finetunes
the previous model using synthetic data for better perfor-
mance. Metric3D [53] and Metric3Dv2 [16] transform im-
ages to canonical camera intrinsics with a fixed focal length.
DepthPro [1] proposes a two-stage training curriculum with
a second stage solely on synthetic data to sharpen bound-
ary predictions. DepthCrafter [17] leverages a conditional
diffusion model to predict temporally consistent depth maps

for videos. In this work, we utilize UniDepth [28] for metric
MDE, which uses a geometric invariance loss on different
image augmentation to enforce consistency.

RAFT [38] presented the state of the art for optical flow
estimation for a long time. It improved previous meth-
ods by introducing a recurrent look-up operator on corre-
lation volumes to iteratively refine flow predictions with-
out needing coarse-to-fine flow pyramids. GMFlow [46]
avoids correlation volumes and instead leverages the prop-
erties of transformers for global matching on feature maps.
This removes the need for iterative steps to improve runtime
performance. UniMatch [47] extends GMFlow network by
tasks of disparity and depth prediction to enable cross-task
transfer learning of a single transformer network.

We rely on both off-the-shelf MDE and Optical Flow
networks to benefit from strong geometric priors during
training and inference.

2.2. SfM and SLAM

For many decades, the problem of recovering camera pa-
rameters and geometry from images has been formulated
as the Structure-from-Motion (SfM) pipeline [14, 24, 26].
While many different implementations of the SfM pipeline
exist, COLMAP [32] has emerged as the standard due to
its robustness and flexibility. One of the drawbacks of SfM
methods is their high computational cost. Simultaneous Lo-
cation and Mapping (SLAM) [9, 10, 22, 23] approaches em-
ploy a similar pipeline to SfM but focus on the efficient pro-
cessing of consecutive video frames. In recent years, these
classical optimization-based approaches were enhanced by
learned components [2, 7, 19, 21, 29–31, 52]. However,
relying on epipolar geometry [15] or photometric consis-
tency [10] makes them susceptible to high error on highly
dynamic scenes. The strong focus on self driving data pro-
vided datasets with mostly static environments [4, 11, 36],
an assumption that does not hold for casual videos.

2.3. Learning Based SfM and SLAM

Largely learning-based methods started to replace classical
SLAM and SfM systems due to improved robustness [39].
DROID-SLAM extends the framework of RAFT [38] by an
update operator on both depth and pose estimates. A final
differentiable bundle adjustment (BA) layer produces the fi-
nal pose estimates. ParticleSfM [56] utilizes dense corre-
spondences inside a BA framework to optimize poses. The
dense correspondences are initialized from optical flow, and
dynamic points are filtered using trajectory-based motion
segmentation. CasualSAM [55] predicts both depth and
movement from images to get frame-to-frame motion. A
global optimization aligns the scale of the prediction and
refines the poses. Dust3R [44] is a dense multi-view stereo
method that regresses point coordinates between an im-
age pair. This allows it to be extended to either SfM or
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SLAM. FlowMap [34] proposes to reconstruct a scene by
overfitting a depth network to it and aligning depth maps
via correspondences from flow or point tracking. LEAP-
VO [5] combines visual and temporal information of video
sequences to improve the tracking accuracy of points and
identify occluded and dynamic points. A sliding window
bundle adjustment then optimizes the poses. The concurrent
work of MonST3R [54] finetunes Dust3r on mostly syn-
thetic data to generalize it to dynamic scenes. While these
works achieve impressive progress, they generally obtain
poses from aligning depth and point maps or by optimizing
them per-scene. This makes it hard to inject prior informa-
tion about camera motion. In contrast, our method uses a
neural network to predict a trajectory, which can effectively
learn priors over realistic camera motions.

3. Method
In the following, we first describe our transformer-based
model AnyCam, which directly predicts camera pose and
intrinsics for video sequences. Further, we introduce an
uncertainty-based training scheme, which enables training
on large-scale dynamic video datasets without any ground
truth labels, and a lightweight test-time refinement strategy.

3.1. Preliminaries

As input, our pipeline receives a sequence of n video frames
Ii ∈ ([0, 1]3)Ω, i ∈ N , where N = {1, . . . , n} denotes the
set of frame indices and Ω = {1, . . . ,H}×{1, . . . ,W} de-
notes the pixel lattice. Using off-the-shelf depth and optical
flow predictors, we further obtain dense depth maps Di ∈
R1×H×W

+ , as well as dense optical flows Fi→j ∈ R2×H×W

from any frame i to j. We generally assume a simpli-
fied pinhole model that is constant for the duration of a se-
quence. Therefore, camera intrinsics for a video are mod-
eled via a single focal length f ∈ R+. Let πf (x) : R3 →
R2 be the corresponding projection function that maps a
point x ∈ R3 in the camera’s coordinate system to the re-
spective pixel p ∈ R2 on the image plane parametrized by
focal length f . Accordingly, π−1

f (p, d) : (R2,R+) → R3

denotes the unprojection function where d is the depth value
for p. Let Pi→j ∈ SE3 describe the relative camera pose,
consisting of a rotation and translation, between frames i
and j. To map a pixel location p from frame i to frame j
given the pixel’s depth value dp in frame i, we write:

p′ = πf

(
Pi→jπ−1

f (p, dp)
)

(1)

3.2. Transformer for Camera Prediction

Camera pose and intrinsics are crucial for many 3D tasks.
While SfM and SLAM can be highly accurate in well-
posed, static environments, they are very sensitive to out-
liers. Therefore, dynamic objects pose a significant chal-
lenge to them. Not only do they make convergence to the

correct solution more difficult, but they also often lead to
catastrophic failures like loss of tracking or degenerate so-
lutions. Different techniques were introduced to make the
underlying optimizations more robust. These range from
robust cost functions and RANSAC, to filtering out ob-
jects that could possibly move using off-the-shelf segmen-
tation models. Nevertheless, these techniques are either
hand-crafted, struggle to generalize across many domains,
or present a significant computational overhead.

This paper aims to build a robust camera pose estimation
system that can readily be applied to any casual video. We
base our design on three key insights:
1. The space of plausible camera poses in videos is much

more constrained than in general multi-view settings.
2. Strong, data-driven priors can help resolve ambiguities

introduced by dynamic objects.
3. Incorporating information from all pixels instead of se-

lected keypoints makes detecting outliers easier.

Pose from a feed-forward network. For a natural video
captured by a single camera, the space of plausible camera
movements is well-constrained and continuous. This is es-
pecially true when also considering the temporal context of
videos. However, this prior information is hard to inject into
classical SfM and SLAM approaches [45]. Hand-crafted
priors often fail to generalize to different domains and strug-
gle to capture the full variety of plausible motions. On the
other hand, when trained on large and diverse datasets, neu-
ral networks can learn strong priors over the distribution of
plausible camera poses. This knowledge makes them robust
to small outliers or noisy measurements and provides reli-
able generalization abilities. Therefore, we choose a neural
network for the prediction of frame-to-frame poses.

We rely on a transformer architecture, which as input
receives frames Ii, depth predictions Di, and flow predic-
tions Fi→i+1 for a short sequence. First, a backbone ex-
tracts features for each timestep separately. Stacked self-
attention layers allow the model to then exchange infor-
mation between the frames, producing n − 1 pose tokens
ϕi→i+1, i ∈ {1, . . . , n− 1} and updated feature maps. Ad-
ditionally, a single sequence token ϕseq is predicted.

To decode the features, a frame prediction head H =
(HP,Hσ) outputs the 6DOF camera poses Pi→i+1 and
pixel-wise uncertainty maps σi ∈ RΩ

+ for every timestep.
A sequence head Hseq additionally determines a single set
of camera intrinsics for the video. In the following, we ex-
plain how to robustly design these decoder heads.

Robust intrinsics hypotheses. Camera intrinsics, which
in our case are parametrized by focal length f , are notori-
ously difficult to disentangle from the camera movement.
For example, the same motion pattern in the optical flow
can be described by mostly rotation if the camera has a

3



Shared Weights

Uncertainties

Relative Poses Losses

Tr
an
sf
or
m
er

Pose
Tokens

Patch
Features

Per Frame

Tr
an
sf
or
m
er

for :

Final Loss   Input: casual videos w/o poses
intrinsics

Figure 2. Architecture. AnyCam processes a sequence of frames from a casual video with corresponding depth maps and optical flow.
A backbone extracts feature maps per image. Information sharing between frames is enabled by multiple attention layers that process
the features of all sequence images. The transformer architecture outputs one pose token ϕi→j per timestep and an additional sequence
token ϕseq. The pose tokens are processed using multiple intrinsic hypotheses f ∈ {f1, . . . , fm}, parametrized by frame prediction heads
(HP

f ,Hσ
f ). The sequence head Hseq predicts the likelihood scores of the different hypotheses. The model is trained end-to-end via a

reprojection loss, a pose consistency loss between forward and backward pose predictions, and a KL-divergence loss.

wide field of view or by mostly translation, if the field of
view is narrow. Because camera intrinsics have such a ma-
jor effect, designing a robust system to recover them is vital.
While focal length could, in principle, also be predicted by
the network directly, we find that it makes training unstable,
and the network does not converge to a meaningful result

Instead of considering the focal length as a free variable
during training, we reformulate it as a property of the model
itself. Considering a fixed set of m candidate focal lengths
{f1, . . . , fm}, we train m individual frame prediction heads
{Hf1 , . . . ,Hfm}. Every head Hf predicts pose Pi→i+1

and uncertainty map σi
f under the assumption that the given

sequence was captured with a camera of focal length f . For
every candidate prediction, we later compute an individ-
ual loss. The sequence head Hseq learns likelihood scores
P = (ρf1 , . . . , ρfm) for the different candidates. The focal
length and corresponding poses with the highest likelihood
are the final output of the model.

ffinal = argmax
f∈(f1,...,fm)

P (2)

This idea is similar to [34], but we use candidates as part of
the model itself rather than only at the loss level.

3.3. Dynamics-aware Pose Training

We aim to train our model on large, unlabelled datasets.
Here, our loss formulation follows two main objectives:
1. Leveraging multi-view information to recover local cam-

era motion between adjacent frames.
2. Using the context of longer sequences to learn realistic

long-range camera motion patterns.

Uncertainty-aware flow loss. Using the predicted rela-
tive pose Pi→j

f between two frames i and j, and the corre-
sponding depth map Di, we can project all pixel locations

puv from frame i into frame j. Subtracting the original
pixel locations from the projected pixels locations p′

f yields
the induced optical flow F̂i→j

f :

F̂i→j
f,uv = p′

f,uv − puv

= πf

(
Pi→jπ−1

f (puv, duv)
)
− puv

(3)

Assuming a static world, the induced flow F̂i→j
f will

match the reference optical flow Fi→j optimally if the pre-
dicted pose Pi→j

f and depth Di is as close to the real pose
as possible. However, dynamic objects lead to inconsisten-
cies in the reference optical flow, which would deteriorate
gradients during optimization. From a statistical point of
view, these inconsistencies cannot be captured via our flow
induction formulation. Thus, we choose to model them via
so-called aleatoric uncertainty and use the predicted uncer-
tainty map Ui. For a pair of frames i and j, this leads us to
the following loss function:

ℓF
i→j

f,uv =
∥∥∥F̂i→j

f,uv − Fi→j
uv

∥∥∥
1

(4)

LσFi→j

f = − 1

|Ω|
∑
uv∈Ω

ln
1√

2σi
f,uv

exp−
√
2ℓF

i→j

f,uv

σi
f,uv

(5)

which is then summed up over every pair of neighboring
frames within the sequence:

LσF
f =

n−1∑
i=1

LσFi→i+1

f (6)

Intuitively, the model learns to downweight areas in the
input frame where there will likely be a high loss, i.e. dy-
namic objects. In turn, the pose supervision signal mostly
comes from areas that can likely be captured via the induced
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flow, i.e. static parts. In practice, the uncertainty map does
not only make pose training more stable, but it can also be
used in downstream tasks as a motion segmentation map.
Finally, due to its dense nature, the loss is robust to small
outliers, such as local inaccuracies of the reference flow.

Learning camera motion patterns. While the flow loss
LσF
f provides a strong training signal per frame, the model

could, in theory, minimize the loss without considering ad-
jacent frames. However, it is important for the model to
also rely on the context of the entire sequence when predict-
ing camera poses. For example, optical flow predictions for
some frames could be inaccurate, or dynamic objects could
occlude the relevant static part. We introduce an additional
loss term and a dropout training strategy to make the model
consider the entire sequence.

We first leverage the fact that when reversing the
sequence, the relative poses Pj→i

f between frames are
the same as the inverted poses of the original sequence
(Pi→j

f )−1. The model becomes more robust towards inac-
curate inputs by enforcing consistency between the forward
and backward pose predictions during training. We rely on
a simple L1 loss, where I4 is the 4× 4 identity matrix:

L↑↓
f =

n−1∑
i=1

∥∥∥∥(Pi→i+1
f

)−1

Pi+1→i
f − I4

∥∥∥∥
1,1

(7)

Furthermore, we utilize the temporal dependency of
poses within a sequence. Given the overall trajectory, the
model should learn strong motion priors. To encourage this,
we apply a dropout scheme during training by setting val-
ues in the pose tokens to zero with probability pdrop . This
encourages the network to exchange information between
frames in the self-attention layers. The network needs to
learn realistic motion patterns to overcome the noise in-
jected by dropout. Note that applying dropout on the pose
tokens does not affect the uncertainty map.

Finding the best candidate. While the flow loss LσF
f

is very effective for learning pose and uncertainty, it also
serves as a helpful proxy. It indicates how well the model
can reconstruct the observed optical flow using the pre-
dicted poses Pi→j

f and corresponding focal length f . Af-
ter the model has converged during training, it will predict
(close to) the optimal poses assuming focal length f . LσF

f

now is mainly dependent on f . Thus, the magnitude of LσF
f

during training reflects how close f is to the true but un-
known actual focal length. We leverage this fact and train
the sequence head Hseq to predict which of the focal can-
didates will yield the lowest flow loss.

In practice, we find that, while correct on average,
argmin on the different loss terms is too noisy to enable
stable training. Therefore, we first convert the (inverted)

flow loss terms to probability scores using softmax and
then optimize the Kullback-Leibler divergence KLdiv. Let
P = (ρfi , . . . , ρfm) be the output of Hseq:

LIntr = KLdiv
(
P, softmax(−LσF

f1 , . . . ,−LσF
fm)

)
(8)

Final loss. By combining all loss terms, we obtain the
final training objective, through which our model learns
poses, uncertainties, and intrinsics from unlabelled video
sequences:

L =

m∑
k=1

(
λσFLσF

fk
+ λ↑↓L↑↓

fk

)
+ λIntrLIntr (9)

3.4. Test-time Refinement

Our model predicts relative camera poses for a sequence of
frames. This allows our model to be directly used as a visual
odometry system by chaining the relative poses together:

Pj =

j∏
i=1

Pi→i+1 (10)

While this works well for short to medium-length se-
quences, it is prone to accumulating drift over a longer time.
Small inaccuracies in earlier relative poses will propagate
throughout the trajectory.

We perform lightweight test-time refinement using bun-
dle adjustment (BA) [41] to overcome this issue. By chain-
ing multiple optical flow maps Fı→i+1,Fı+1→i+2, . . ., pix-
els can be tracked through multiple frames. We initialize
the BA system with our predicted trajectory and then opti-
mize over coarse pixel tracks in a sliding-window fashion.
Crucially, the BA optimization requires the predicted uncer-
tainty maps to downweigh pixel tracks on dynamic objects.
For more details on the BA optimization, please refer to the
supplementary material.

4. Experiments
In the following, we thoroughly evaluate the overall perfor-
mance of our model regarding camera pose estimation and
intrinsics recovery. We put a special focus on testing the
zero-shot generalization capabilities of our network. Fur-
ther, we also validate and demonstrate the effectiveness of
our design choices.

4.1. Setup

Data. Our training formulation requires no labeled data
and is robust towards dynamic objects and suboptimal im-
age quality. This is a key benefit of our method, as dynamic
videos with 3D labels are scarce. To highlight this strength,
we rely on a diverse mix of datasets (YouTube-VOS [48],
RealEstate10K [57], WalkingTours [42], OpenDV [49],
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Category Method No
Supervis.

Approx.
Runtime

Sintel TUM-RGBD (dynamics)

ATE↓ RPEtrans ↓ RPErot ↓ ATE↓ RPEtrans ↓ RPErot ↓

w/ intrinsics∗ DROID-SLAM [39] <2min 0.175 0.084 1.912 - - -
DPVO [40] <2min 0.115 0.072 1.975 - - -
LeapVO [5] <2min 0.089 0.066 1.250 0.068 0.008 1.686

w/o intrinsics ParticleSfM [56] <20min 0.129 0.031 0.525 - - -
MonST3R† [54] <2min 0.108 0.042 0.732 0.063 0.009 1.217
Robust-CVD [18] ✓ ? 0.360 0.154 3.443 0.153 0.026 3.528
CasualSAM [55] ✓ >1h 0.141 0.035 0.615 0.071 0.010 1.712

Ours w/o ref. ✓ <20sec 0.099 0.045 0.567 0.095 0.025 1.050
Ours ✓ <2min 0.078 0.031 0.427 0.056 0.005 0.927

Table 1. Pose estimation in dynamic environments. Absolute trajectory error (ATE) and relative pose error for translation (RPEtrans)
and rotation (RPErot) on the Sintel and TUM-RGBD (dynamics) datasets. We compare against other learning-based VO/SLAM systems.
AnyCam achieves competitive performance against systems trained in a supervised manner as well as methods that have ground truth
camera intrinsics available. We consistently outperform Robust-CVD and are on par with CasualSAM, which has a significantly higher
runtime than AnyCam. ∗excluded from the evaluation. †concurrent work. Many measurements are taken over from [54].

Dataset Source Domain Dyn. Seq. Frames

Tr
ai

n

YouTube-VOS YouTube Diverse ✓ 3471 87K
RealEstate10K YouTube Indoor ✗ 6929 90K
WalkingTours YouTube Outdoor ✓ 278 53K
OpenDV YouTube Driving ✓ 532 105K
EpicKitchens GoPro Ego ✓ 167 100K

Te
st

Sintel Blender Synthetic ✓ 14 629
TUM-RGBD MoCap Indoor ✓ 8 720
Davis YouTube Diverse ✓ 90 6118
Aria EA Glasses Ego ✓ 30 19200
Waymo Sensor Rig Driving ✓ 64 3067

Table 2. Dataset Mix: We train our method on a diverse dataset
mix obtained mostly from YouTube. Evaluation happens on un-
seen datasets. For many datasets, custom splits were used.

EpicKitchens [6]) based on YouTube or individual GoPro
capture, as shown in Tab. 2. None of the datasets has ground
truth 3D labels (note that for some, Colmap was later ap-
plied to obtain proxy labels, but we do not use them). Fol-
lowing existing works on pose estimation in dynamic envi-
ronments [5, 54, 56], we perform evaluation on the Sintel
[3] and the dynamic subset of TUM-RGBD [35]. Further-
more, we test AnyCam qualitatively on three other datasets:
Davis [27] (diverse videos from YouTube), Waymo [37]
(autonomous driving), and Aria Everyday Activities [20].

Implementation details. We rely on the recent UniDepth
[28] and UniMatch [47] methods to obtain depth and flow
maps. Our model is implemented in PyTorch and is initial-
ized with a pretrained DinoV2 [25] ViT backbone. We train
AnyCam in two stages with different sequence lengths, first
2 and then 8 frames. All frames are sampled at a resolu-
tion of 336 × 336 from the videos in the datasets. During
inference, we crop the input video to squares of 336 and
pass sequences of up to 100 frames to the model at once.
The model is configured to use 32 focal length candidates

ranging from 0.1H to 3.5H where H is the image height.
Training converges after 250k iterations at a batch size of
16 (seq. len 2) and 4 (seq. len 8) per GPU, and takes around
two days on two NVIDIA A100 40GB GPUs per stage. For
a video of 50 frames, it takes around 1) 15 seconds to ob-
tain flows and depths, 2) 5 seconds for AnyCam to predict
a trajectory, and 3) 90 seconds for test-time refinement. For
more implementation details and hyperparameters, please
refer to the supplementary material.

4.2. Camera Pose Estimation

We first test AnyCam’s ability to recover camera trajectory
in challenging environments and compare it to state-of-the-
art methods in that domain. We group methods by the
amount of data they require both during training and test
time. SLAM and SfM systems for dynamic environments,
like DPVO [40] and LeapVO [5], are trained with ground
truth motion or trajectory data and mostly require camera
intrinsics during test time. Methods like CasualSAM [55]
require neither special training data nor intrinsics but are
slow because they rely on much more costly test-time opti-
mization. In comparison, AnyCam works in a feed-forward
way, and optional test-time refinement is very lightweight.

Our model achieves strong quantitative results through-
out all benchmarks as shown in Tab. 1. The low relative
pose errors for translation (RPEtrans and rotation (RPErot),
even without test-time refinement, confirm that our model
learns meaningful motion priors during training and gen-
eralizes to other datasets. In particular, this is notewor-
thy compared to specialized SLAM systems like LeapVO,
which result in significantly higher local pose errors.

However, when only relying on feed-forward predic-
tions, our model can suffer from drift, denoted by a slightly
higher absolute trajectory error (ATE). This is a result of
chaining the predicted relative poses Pi→j , where small er-
rors in earlier frames accumulate over time. Our test-time
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Davis

Waymo Aria Everyday Activities

Figure 3. Qualitative results on various datasets. Red: forward-pass prediction, Green: refined trajectory, Yellow: GT (if available).
AnyCam is able to predict high-quality pose estimates on challenging scenes in dynamic environments. The uncertainty maps show
objects with a high likelihood of movement, such as persons or cars, that would produce inconsistencies in the induced optical flow. Pose
refinement with bundle adjustment further aligns the trajectory towards reducing the error compared to the ground truth poses.

refinement effectively corrects for this by leveraging longer-
range dependencies between frames. As a result, the drift is
reduced, and AnyCam matches the ATE for some SLAM
systems like LeapVO, which requires camera intrinsics.

As can be seen in Tab. 1, AnyCam also generalizes to
different domains like autonomous driving or egocentric vi-
sion. In particular, it works well in settings where classical
SfM or SLAM systems are difficult to operate in. For ex-
ample, in the first sequence of Aria Everyday Activities, a
person enters a house via an opening door. Not only does
the lighting change drastically, but also the 3D environment
transforms as the door opens. Still, the camera motion tra-
jectory is recovered correctly. During the second Waymo
sequence, a vehicle moves in stop-and-go traffic. As can be
observed in the uncertainty maps, AnyCam correctly iden-
tifies the moving vehicles on the left side as moving, while
the uncertainty for the bus on the right is low. This indicates
that the model actually relies on motion cues and not only
on semantics, which would be the case when filtering out
(potentially) moving objects with segmentation models.

Method AFE(px) ↓ RFE(%) ↓

UniDepth 447.4 0.357
Dust3r 434.0 0.364

Ours 252.2 0.181

Table 3. Camera intrinsics estimation. We measure the mean
absolute focal error (AFE) and mean relative focal error (RFE)
across all sequences of the Sintel dataset.

4.3. Intrinsics Recovery

For most casual videos, particularly when they originate
from the internet, camera intrinsics are not available. Nev-
ertheless, they are crucial for high-quality pose estimation
and reconstruction. Therefore, we also evaluate the accu-
racy of the recovered focal length and report the results in
Tab. 3. UniDepth predicts depth maps and focal length from
a single image. Our superior performance against UniDepth
(which provides the depth maps for AnyCam) suggests that
our video-based training and inference offer benefits for fo-
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Figure 4. Focal length candidates. Predicted likelihood and com-
puted flow loss for different focal candidate (FL) hypotheses for
two sequences of the Davis dataset. Below: Estimated trajecto-
ries for selected FL hypotheses increasing from left to right. Red
trajectory shows the trajectory for the FL with the highest likeli-
hood. The predicted likelihood tends to be more stable than the
loss when estimating the best candidate.

cal length recovery. While Dust3r also processes sequential
frames, it is trained on classical multi-view settings and fails
to generalize well to challenging dynamic scenarios.

Additionally, we test our approach of training several
prediction heads assuming different focal length candidates.
As seen in Fig. 4, the individual heads predict significantly
varying pose trajectories. For higher focal lengths on the
right side, motion is modeled more through translation and
only small rotations. The lower the focal length, the more
the network predicts strong rotation. This highlights the im-
portance of selecting the correct focal length candidate.

In both examples, the predicted likelihood scores seem to
pick a candidate that is very close to the actual focal length,
and the selected trajectory is plausible. While the calcu-
lated loss is a very good indicator of which focal length is
optimal, it can be noisy and is not guaranteed to always be
correct. In the second example, the field-of-view is narrow,
indicating a high focal length. However, the minimal loss is
achieved for a fairly low focal length. We hypothesize that

Seq. len. Refinement Sintel

Train Infer Simple Uncert ATE↓ RPEtrans ↓ RPErot ↓

2 2 0.134 0.045 0.393
2 ≥8 0.179 0.052 0.537
8 2 0.182 0.053 0.617
8 ≥8 0.099 0.045 0.567
8 ≥8 ✓ 0.136 0.036 0.440
8 ≥8 ✓ 0.078 0.031 0.427

Table 4. Model ablation on Sintel: We test the effect of 1) se-
quence length during training and inference, and 2) enabling re-
finement with or without uncertainty.

the model learned to effectively filter out this noise, leading
to a more stable and more accurate predictor compared to
selecting the candidate with the lowest loss.

4.4. Model Ablations

Finally, we evaluate the design choices that went into our
model and report the results in Tab. 4. First, we test whether
AnyCam can learn meaningful priors from sequences. For
this, a second model AnyCam2 trained only on sequences of
length 2 (i.e. pairs of frames) is used as comparison. This
model only predicts a single relative pose between the two
frames and does not learn to use the context of longer se-
quences. The RPEtrans and RPErot metrics indicate that Any-
Cam2 can still perform accurate prediction between pairs of
frames. However, the poor ATE results show that it leads
to a noticeably higher drift. When passing a longer se-
quence to AnyCam2 at test time, the model cannot use this
additional information and even gets confused, leading to
overall poor results. Similarly, the final trajectory will suf-
fer from drift when training with sequences of 8 frames but
only passing pairs of frames to the model at inference. Only
provided longer sequences, the model can utilize the learned
priors, leading to improved overall scores.

Additionally, we verify the effectiveness of our refine-
ment strategy. Naive bundle adjustment struggles to provide
an improvement, even when initialized with the predicted
trajectory and focal length. Only when also weighing the
pixel tracks through AnyCam’s uncertainty, bundle adjust-
ment can improve the overall trajectory quality.

5. Conclusion
AnyCam demonstrates that pose estimation and intrinsics
recovery can effectively be performed by a feed-forward
network with lightweight test-time refinement. It is pos-
sible to achieve competitive performance with supervised
learning methods in the tasks of SfM and SLAM. Through
a novel training pipeline, AnyCam can be trained on a large
corpus of casual video data.
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Marcel Santos, Yichao Zhou, Stephan R Richter, and
Vladlen Koltun. Depth pro: Sharp monocular metric depth in
less than a second. arXiv preprint arXiv:2410.02073, 2024.
2

[2] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten
Rother. Dsac-differentiable ransac for camera localization.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6684–6692, 2017. 2

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In European Conf. on Computer Vision (ECCV), pages 611–
625. Springer-Verlag, 2012. 6

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 2

[5] Weirong Chen, Le Chen, Rui Wang, and Marc Pollefeys.
Leap-vo: Long-term effective any point tracking for visual
odometry. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 19844–
19853, 2024. 2, 3, 6

[6] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Scaling egocentric vision: The epic-kitchens dataset. In
Proceedings of the European conference on computer vision
(ECCV), pages 720–736, 2018. 6

[7] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
224–236, 2018. 2

[8] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 2

[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 6
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AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos

Supplementary Material

A. Overview
In this supplementary, we explain more details on imple-
mentation in Appendix C and the test-time refinement pro-
cess in Appendix D. We also consider limitations and future
work in Appendix E and ethical implications in Appendix F.

B. Code & Project Page
We release our code base for training, evaluation, and visu-
alization under github.com/Brummi/anycam. Additionally,
we provide interactive 3D results and more details on our
project page under fwmb.github.io/anycam.

C. Further Implementation Details
Focal Length Candidates. In our model, we configure
m = 32 distinct focal length candidates. For every can-
didate fi, we train individual prediction heads Hfi . Focal
length is not linearly related to rotation and translation mag-
nitudes. Empirically, we find that the following formula,
which combines linear and exponential spacing, provides a
good distribution of focal length candidates.

δi =
i

m− 1
(11)

f exp
i = exp (δi log(fmin) + (1− δi) log(fmax )) (12)

f lin
i = δifmin + (1− δi)fmax (13)

fi = 0.75 · f exp
i + 0.25 · f lin

i (14)

We define fmin = 0.1H and fmax = 3.5H , where H rep-
resents the height of the input image in pixels, yielding the
distribution which can be seen in Fig. 5. In this way, the
model can make predictions independent of the pixel size.

Camera Pose Parametrization. The prediction heads do
not directly output the P ∈ R4×4. To ensure that the pose
matrix is in SE3, we predict translation t ∈ R3 and rota-
tion R ∈ SO3 separately. R is parametrized via the axis-
angle representation, i.e. the model predicts three values for
the different axis rotations. We find that the axis-angle rep-
resentation is significantly more stable than the quaternion
representation and it converges faster. When using quater-
nions, it usually happens that a small number of (random)
prediction heads does not converge to meaningful results.

Training Stabilization. Our training datasets cover a di-
verse range of datasets, which all have varying scales. E.g.
driving datasets depict scenes and movements much larger

Figure 5. Focal Length Candidates. Linear-exponential distribu-
tion of focal length candidates relative to the image height.

compared to video sequences captured from VR glasses.
When naively training on all five datasets from the start,
the model does not converge to a meaningful solution. We
hypothesize that the different scales introduce noise that
hinders the optimization process. To overcome this issue,
we first undergo a warmup phase, during which datasets
are introduced one-by-one. First, the model is trained for
10,000 steps on RealEstate10K, then for another 10,000
steps on RealEstate10K and EpicKitchens, and so on un-
til all datasets have been introduced. Through this strategy,
the model can already roughly estimate the camera pose and
then only is adapted to a different scale.

Loss Configuration. The model is trained using the
Adam optimizer at a learning rate of ϵ = 1e−4. After
100,000 steps, the learning rate is reduced to ϵ = 1e−5.
We use λσF = 1, λ↑↓ = 1, and λIntr = 1. Since the flow
loss values tend to have a very small magnitude, we set the
temperature of the softmax operator in LIntr to 100. Note
that we also detach the flow losses in LIntr and only pass
gradients to the sequence head. This ensures that the differ-
ent candidate heads remain independent of each other. Fi-
nally, we also apply L2 weight decay with a factor of 0.01
on the pose tokens to avoid overflow issues when training
with mixed precision.

Model Architecture. We adapt the DinoV2 based
DepthAnything model to predict both a pixel aligned map
and tokens for pose and intrinsics. For both our backbone
and UniDepth, we rely on Vit-S.

1
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D. Test-Time Refinement Details
The main objective of our test-time refinement strategy is
to reduce drift over longer time frames. To ensure geo-
metric consistency over time, we apply bundle adjustment
(BA) and optimize the camera trajectory in a sliding win-
dow fashion.

Setup. Since we primarily care about long-range depen-
dencies, we apply BA with a stride of 3 frames. After the
optimization is complete, the remaining poses are then in-
terpolated and combined with the original predictions. Dur-
ing BA, we sample a uniform 16 × 16 grid of points per
frame and then track them for 8 consecutive frames. Track-
ing is performed by chaining optical flow maps and we ad-
ditionally accumulate uncertainty per tracked point. The
uncertainty of a tracked point at a specific frame is the sum
of uncertainties from all previous frames of the track. Intu-
itively, this means that a track only has low uncertainty as
long as it does not encounter a pixel that has high uncer-
tainty. For every point track, we optimize a single 3D point
anchored in the first frame of the track and parametrize it
by inverse depth. The point is initialized via the predicted
depth that was also used as input by the AnyCam model.
Thus, a track Tfxy starting in frame f at grid location x, y
is defined by

Tfxy = ((p1, . . .p8), (σ1, . . . , σ8), d
−1) (15)

where pj are the pixel locations in the consecutive frames,
σj are the corresponding uncertainty values, and d−1 is the
inverse depth of the anchor point. In total, we optimize 1)
the camera poses, 2) the inverse depths of the anchor points,
and 3) a single focal length value.

Optimization. The main objective of our optimization
process is to minimize the reprojection error for every track.
In fact, we rely on a similar formulation as the flow loss
ℓF

i→j

f,uv used for training AnyCam. To completely filter out
very dynamic objects, we define a maximum uncertainty
σmax = 0.05 and ignore all points that exceed this thresh-
old. All others are weighted accordingly in a linear fashion.
Let T = {T000, . . .} be the set of all tracks in the sequence:

LRepr
T =

8∑
i=2

∥∥∥πf (P
1→iπ−1

f (p1, 1/d
−1))− pi

∥∥∥
1
·(σmax − σi)

(16)

LRepr =
1

|T|
∑
T∈T

LRepr
T (17)

Note that the uncertainties are not optimized during test-
time refinement. Additionally, we apply smoothness term
to encourage straight trajectories. Let n be the total number

of frames in the sequence:

LSmooth =
1

n− 2

n−2∑
i=1

∥∥∥∥(Pi→i+1
f

)−1

Pi+1→i+2
f − I4

∥∥∥∥
1,1

(18)
The final cost function is obtained by combining both terms,
with λSmooth = 0.1:

LBA = LRepr + λSmoothLSmooth (19)

We implement the entire BA process in PyTorch and use the
Adam optimizer with a learning rate of 1e−4.

Sliding Window. Optimizing the entire sequence at once
is both costly and can lead to instabilities. Therefore, we
apply BA in a sliding window fashion. We define our win-
dow to be w = 8 frames wide and use an overlap of o = 6.
That means we begin by optimizing the first 8 frames, and
then shift the window by w − o = 2 to optimize frame 3
to 10. Note that we freeze the poses that have already been
optimize and only adapt poses 9 and 10. For every sliding
window, the optimization is performed for 400 steps. This
is repeated until the end of the sequence is reached. In the
end, we perform 5000 steps of global BA, where we con-
sider all poses.

E. Limitations & Future Work
Reliance on pretrained model. AnyCam uses both pre-
trained depth and optical flow models during training and
inference. While UniDepth and UniMatch show really
strong performance, they can fail in rare cases. Depending
on the severity of the failure, the accuracy of AnyCam can
then get compromised. Typical failure cases include poor
optical flow predictions when there are challenging lighting
conditions, or inaccurate depth predictions when the input
image does not have any scene context. Note that many
errors in the input can still be dealt with due to our uncer-
tainty formulation. Similarly, even though depth prediction
are very consistent in scale as UniDepth is a metric depth
model, the depths can have small flickering. This becomes
visible when aggregating multiple depth maps over a longer
time.

For future work, it would make sense to design the model
to be reliant exclusively on images as input. Furthermore,
we plan to add a system which adapts the scale and shift of
the depth maps to be consistent among each other to allow
for more accurate 4D reconstruction.

Drift over longer time. Our test-time refinement already
greatly improves the drift problem. However, even then we
only use tracks of length 8. To overcome drift on a global
scale, our system would require a global scene represen-
tation or other techniques like keyframes. Many existing
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SLAM and SfM systems [40, 43] provide inspiration for
that.

Unnatural camera motion During training, AnyCams
learns to translate images, flow, and depth of a sequence
to a realistic camera motion. Our training data is very di-
verse, covering a wide range of realistic motions, and our
experiments show that AnyCam can generalize very well.
Still, due to its nature as a neural network, the model can
fail when encountering very uncommon / unnatural camera
motions.

To improve generalization even further, we plan to train
the model on even more datasets. This can be achieved eas-
ily as our training pipeline is able digest any kind of unla-
belled videos.

F. Ethical Considerations
Our training data is partially made up of videos obtained
from public sources like YouTube. These videos can con-
tain identifying information like faces, number plates, etc..
To remove such information, faces have been blurred in
many datasets, e.g. WalkingTours, before usage in our
project. Additionally, since our model only predicts cam-
era poses and uncertainty, the output does not allow to infer
the identity of persons in the input data.

While we also aim to build a data mix that covers dif-
ferent geographical regions and domains, it is nevertheless
possible that the model learns a bias. For example, driving
data in the OpenDV dataset is mostly from the US, China,
and Europe. Our model might struggle in driving environ-
ments that are very different from this training data.

Finally, despite showing strong performance, we cannot
provide accuracy guaranties for the predictions of AnyCam.
Therefore, it should not (yet) be used in safety-critical ap-
plications.
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